EMPIRE XPU Tutorial

Printed Inverted-F Antenna

Overview: Topics

- Start from Scratch
- GDS layout import
- Priority control
- In-plane lumped ports
- Near field dump
- Far field transformation
- Near field animation
- Far field animation

Step 1: Import Layout

- Start EMPIRE XPU from Desktop
- Select "New Project", OK
- Select File → Import → 2D Layout → GDSII
- Browse for "data/ifa.gds" **
- Define the new group name to "IFA"
- Set Start to 500
- Set Stop to *520*
- Click OK
- Select File → "Save As"
- Enter, e.g. "C:\tutorial\ifa"

^{*}Imported layouts are boxes or polygons and can be found in the group list after import for modification purposes.

^{**} C:\EMPIRE_XPU_8.00\Tutorials\2D Design\03 Inverted F Antenna\data

Step 2: Substrate Definition

- Switch to "2D Design" Tab
- Open Groups, Click "Create Group"
- Change group name to "Substrate"
- Double click height: z=0...500
- Double click "Conductor" to change property
- Select Dielectric, select Database
- Select Rogers → Rogers –RT/Duroid5880
- Click OK to leave the property editor

Step 3: Object Creation

- Select Icon 'Create Box'
- Enter coordinates of Point 1: (0,0)
- Enter xy coordinates of Point 2: (54000, 85000)
- Click OK
- Press "Zoom Extents" or press the Z-key

Comments: The object is created immediately after pressing on Create – Box with the default values. The drawing is updated as soon as values are modified.

Step 4: Coating

- Click "Create Group"
- Change name to "Coating"
- Double click "Height": z=-200...70€
- Double click "Conductor"
- Select "Dielectric",

Geometric Priority 50*

Enter Rel. Permittivity 1.5,

Fxit with OK

- Select Icon Create Box
- Point 1: x=0, y=0
- Point 2: x=54000, y=85000
- Click OK

* The priority number controls intersecting objects, e.g. substrate and coating: The object with the higher number remains in the intersecting area. Any number between 10 and 250 can be applied. More than 2 objects may be used. Defaults are 100 for dielectric, 200 for conductor.

Step 5: Port definition

Step 6: Simulation Setup

- Open Simulation Setup
- Select EM Setup tab
- Set Stop Frequency to 10 GHz,
- Set Target Frequency to 2.45 GHz
- Close Window

Step 7: Field recording

- Click "Create Field Monitors "
 → Tab: "EM Field" → "Plane"
- OK
- Click "Create Field Monitors"
- → Tab: "EM Far Field" → "Boundary"
- OK
- Open Field Monitor (EM Farfield)
- Set Display Origin to x=30000, y=78000, z=260

Field monitors (right click to edit):

- 3D Plot options can be set after simulation and postprocessing
- Display Origin used as center for 3D pattern visualization
- Far field setups can be set after simualtion, only new post processing is necessary
- -The predefined calculations in the Far field monitor define 3 far field postprocessings
 - Far Field Setup 1 (phi=0-cut plane)
 - Far Field Setup 2 (phi=90-cut plane)
 - Far Field Setup 3 (3D pattern)

Step 8: Simulation & Results

- Press 'Start Simulation'
- Confirm OK
- After the simulation (State: "Finished") switch to the "2D Results" tab

Plot Type: Voltage (Time Domain)

S-Parameters (S1_1)

Impedance (Z1.in)

Step 9: Animation

- Switch to "3D Result" Tab
- Open Field Monitor
- Optionally switch off/on monitors for display (light bulb)
- Optionally, right click Edit to modify Plot Options

